吉首大学数学考研真题笔记资料
点击标题即可查看资料详情,勾选相关专业前去购买
数学教育专业(专科):
本专业培养德、智、体、美全面发展,具有现代教育理念,熟悉教育基本规律, 适应教育改革需要,掌握基础数学的基本理论、基本技能,掌握重要的数学思想方法,能熟练使用现代教育手段和方法进行数学教育教学工作,具有一定的教育教学科研能力和班级管理能力的小学教育阶段数学教师和具有一定数学素养的专门人才。
主要开设数学分析、高等代数、解析几何、概率统计、常微分方程、复变函数、初等数论、计算机应用基础、VB语言程序设计、教育原理、教育心理学、小学数学教材教法、小学数学教学研究、现代教育技术等专业核心课程。学制三年。
吉首大学硕士研究生入学考试自命题考试大纲
考试科目代码:[ 709 ]
考试科目名称:高等数学
一、考试形式与试卷结构
1) 试卷成绩及考试时间
本试卷满分为 150 分,考试时间为 180 分钟。
2)答题方式:闭卷、笔试
3)试卷内容结构
各部分内容所占分值为:
a:极限,微分,积分,约 100 分
b:向量代数和空间解析几何,级数,常微分方程,约 50 分
4)题型结构
a: 单项选择,填空,约 60 分
b: 计算题及证明题,约 90 分
二、考试内容与考试要求
1、函数、极限、连续
考试内容
函数的概念及表示法;函数的有界性(有界和收敛的关系 存在正数 M 使
f(x)<M 恒成立则有界,不存在 M 则无界,注意与无穷大的区别-如振荡型函数)、
单调性、周期性(注意周期函数的定积分性质)和奇偶性(奇偶性的前提是定义域关
于原点对称);复合函数(两个函数的定义域值域之间关系)、反函数(函数必须严
格单调,则存在单调性相同的反函数且与其原函数关于 y=x 对称);基本初等函
数的性质及其图形;初等函数函数关系的建立(应用题);数列极限(转化为函数极
限、单调有界、定积分)与函数极限(四则变换、无穷小代换、积分中值定理、洛
必塔法则);函数的左极限与右极限(注意正负号);无穷小(以零为极限)和无穷大(大于任意正数)的概念及其关系;无穷小的性质(和性质、积性质)及无穷小的比
较(求导定阶);极限存在的两个准则:单调有界准则和夹逼准则;两个重要极限 :
0
1
x
sin
x
lim
x
1 1
x
x
lim
e
x
函数连续的概念(点极限存在且等于函数值);初等函数的连续性;闭区间上
连续函数的性质(零点定理、中值定理) 。
考试要求
(1)理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函
数关系式。
(2)了解函数的有界性、单调性、周期性和奇偶性。
(3)理解复合函数及分段函数的概念。
(4)理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存
在与左、右极限之间的关系。
(5)掌握极限的性质及四则运算法则。
(6)掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要
极限求极限的方法。
(7)理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷
小求极限。
(8)理解函数连续性的概念。
(9)了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的
性质(有界性、最大值和最小值定理、中值定理),并会应用这些性质。
2、一元函数微分学
考试内容
导数和微分的概念;导数的几何意义和物理意义;函数的可导性与连续性之
间的关系;平面曲线的切线和法线;导数和微分的四则运算;基本初等函数的导
数;复合函数、反函数的微分;高阶导数;一阶微分形式的不变性;微分中值定
理;洛必达法则;函数单调性的判别;函数的极值;函数图形的凹凸性、拐点及
渐近线;函数的最大值与最小值;弧微分。考试要求
(1)理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意
义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述
一些物理量,理解函数的可导性与连续性之间的关系。
(2)掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数
的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微
分。
(3)了解高阶导数的概念,会求简单函数的高阶导数。
(4)会求分段函数的导数。
(5)理解并会用拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并
会用柯西(Cauchy)中值定理。
(6)掌握用洛必达法则求未定式极限的方法。
(7)理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的
方法,掌握函数最大值和最小值的求法及其应用。
(8)会用导数判断函数图形的凹凸性(注:在区间( a,b ) 内,设函数 f ( x )具
有二阶导数。当 f ( x ) 0时, f ( x )的图形是凹的;当 f ( x ) 0时, f ( x )的图
形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线。
3、一元函数积分学
考试内容
原函数和不定积分的概念;不定积分的基本性质;基本积分公式;定积分的
概念和基本性质;定积分中值定理;不定积分和定积分的换元积分法与分部积分
法;有理函数、三角函数的有理式和简单无理函数的积分;定积分的应用。
考试要求
(1)理解原函数的概念,理解不定积分和定积分的概念。
(2)掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中
值定理,掌握换元积分法与分部积分法。
(3)会求有理函数、三角函数有理式和简单无理函数的积分。(4)掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平
面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、
引力、压力、质心、形心等)及函数的平均值。
4、向量代数和空间解析几何
考试内容
向量的概念;向量的线性运算;向量的数量积和向量积;向量的混合积;两
向量垂直、平行的条件;两向量的夹角;向量的坐标表达式及其运算;单位向量
方向数与方向余弦;曲面方程和空间曲线方程的概念;平面方程;直线方程;平
面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件;点到平面和
点到直线的距离;球面;柱面;常用的二次曲面方程及其图形;空间曲线的参数
方程和一般方程。
考试要求
(1)理解空间直角坐标系,理解向量的概念及其表示。
(2)掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个
向量垂直、平行的条件。
(3)理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标
表达式进行向量运算的方法。
(4)掌握平面方程和直线方程及其求法。
(5)会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平
面、直线的相互关系(平行、垂直、相交等)解决有关问题。
(6)会求点到直线以及点到平面的距离。
(7)了解曲面方程和空间曲线方程的概念。
(8)了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方
程。
5、多元函数微分学
考试内容
多元函数的概念;二元函数的几何意义;二元函数的极限与连续的概念;有
界闭区域上多元连续函数的性质;多元函数的偏导数和全微分;全微分存在的必
要条件和充分条件;多元复合函数的求导法;二阶偏导数;空间曲线的切线和法平面;曲面的切平面和法线;多元函数的极值和条件极值;多元函数的最大值、
最小值及其简单应用。
考试要求
(1)理解多元函数的概念,理解二元函数的几何意义。
(2)了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质。
(3)理解多元函数偏导数和全微分的概念,会求全微分。
(4)掌握多元复合函数一阶偏导数的求法。
(5)了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它
们的方程。
6、多元函数积分学
考试内容
二重积分与三重积分的概念、性质、计算和应用;两类曲线积分的概念、性
质及计算;两类曲线积分的关系;格林(Green)公式;平面曲线积分与路径无
关的条件;二元函数全微分的原函数;两类曲面积分的概念、性质及计算;两类
曲面积分的关系;高斯(Gauss)公式;曲线积分和曲面积分的应用。
考试要求
(1)理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分
的中值定理。
(2)掌握二重积分的计算方法(直角坐标、极坐标),会计算简单的三重
积分(直角坐标、球面坐标)。
(3)理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分
的关系。
(4)掌握计算两类曲线积分的方法。
(5)了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两
类曲面积分的方法,掌握用高斯公式计算曲面积分的方法。
(6)会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形
的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流
量等)。
7、无穷级数考试内容
常数项级数的收敛与发散的概念;收敛级数的和的概念;级数的基本性质与
收敛的必要条件;几何级数与 p 级数及其收敛性;正项级数收敛性的判别法;任
意项级数的绝对收敛与条件收敛;函数项级数的收敛域与和函数的概念;幂级数
及其收敛半径、收敛区间(指开区间)和收敛域;幂级数在其收敛区间内的基本
性质;初等函数的幂级数展开式。
考试要求
(1)理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基
本性质及收敛的必要条件。
(2)掌握几何级数与 p 级数的收敛与发散的条件。
(3)掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法。
(4)了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关
系。
(5)了解函数项级数的收敛域及和函数的概念。
(6)理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及
收敛域的求法。
(7)了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导
和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项
级数的和。
(8)掌握ex ,sin x ,cos x ,ln(1 x ) 及(1 x ) 的麦克劳林(Maclaurin)
展开式,会用它们将一些简单函数间接展开为幂级数。
8、常微分方程
考试内容
常微分方程的基本概念;变量可分离的微分方程;齐次微分方程;一阶线性
微分方程;伯努利(Bernoulli)方程;全微分方程;可用简单的变量代换求解的
某些微分方程;线性微分方程解的性质及解的结构定理。
考试要求
(1)了解微分方程及其阶、解、通解、初始条件和特解等概念。(2)掌握变量可分离的微分方程及一阶线性微分方程的解法。
(3)会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换
解某些微分方程。
(4)会用降阶法解下列形式的微分方程:
y( n ) f ( x ), y f ( x, y) 和 y f ( y, y) .
(5)理解线性微分方程解的性质及解的结构。
(6)会用微分方程解决一些简单的应用问题。
三、参考书目
同济大学数学系编. 高等数学(第六版). 高等教育出版社,
数理统计及其应用
该学科现有教学科研人员11人,其中教授2人,副教授5人,讲师4人,博士4人,硕士4人,湖南省青年骨干教师2人。主要研究方向如下:
1、统计推断。本方向主要研究应用数理统计方法对带随机性的观测数据建模,进行量化分析,进而做出对未知事物以概率形式的统计推断和统计预测。
2、抽样调查理论与技术。本方向主要研究抽样调查的理论与方法;指令性抽样与敏感性问题抽样调查及统计推断。
3、试验设计与计算机试验。本方向主要研究试验设计的理论及应用,区组设计、超饱和设计,计算机仿真试验的理论、构造及应用。
4、统计优化理论和方法。本方向主要将数理统计方法中的最优化方法应用于资本市场的统计分析中,从统计学、随机微分方程等多个角度分析投资结构、投资风险与收益的关系。
学院现有教授15名,副教授20人,博士19人。湖南省学科带头人1人,湖南省121人才1人,湖南省青年骨干教师7人,湖南省教学能手1人,硕士生导师28人。近几年来,主持国家自然科学基金项目10项,省自然科学基金项目、省教育厅重点项目等省部级科研项目30余项,获国家优秀教学成果奖二等奖1项,湖南省自然科学一、三等奖各1项,省优秀教学成果奖4项,在国内外知名期刊上发表学术论文400多篇,并有110多篇被SCI/SCIE收录,学科综合实力居省内同类高校先进行列,部分研究成果达到国际先进水平。 数学教育
数学教育学科现有教学科研人员5人,其中教授1人,副教授4人,博士2人。主要从事初等数学研究和数学教育技术研究。
1、数学课程论。本方向主要研究数学课程的基本理论,研究数学课程的规划,数学课程的设计,中学数学教材的建设,数学课程资源的开发和运用。
2、数学教学原理。本方向主要研究数学教学的理论与实践,数学教学心理,数学问题解决的理论与实践,数学史与数学文化。
应用统计
该学科现有教学科研人员9人,其中教授3人,副教授3人,讲师3人,博士3人,硕士4人。主要研究方向如下:
1、生物多样性统计理论与方法。本方向立足武陵山经济协作区丰富的动植物资源,应用广义线性模型和排序等方法,开展种质资源与物种多样性的统计理论与方法的基础研究。
2、流行病与卫生统计。本方向结合少数民族人群健康需求,综合运用数理统计学、流行病学和卫生统计学等方法,借助计算机工具和统计软件,研究妇女反复性自然流产、早产及其他妇科疾病的病因;分析少数民族地区代谢性疾病发病率、糖尿病的发生机制及其相关因素等。
3、环境与体质健康的统计研究。本方向从统计学、体质学、健康学、社会学、环境学等多学科角度,利用群体体质健康调研和监测的资料,运用统计学的方法,探讨不同民族体质健康与环境的适应性。
应用数学
应用数学学科现有教学科研人员11人,其中教授3人,副教授6人,博士6人,硕士5人。主要研究方向如下:
1、微分方程与动力系统。本方向主要研究微分方程定性理论及应用、离散动力系统、时标与一般测度链动力系统、分数阶动力系统解的动力学性质、生物系统的微分方程建模及应用。
2、应用密码学与网络安全。本方向主要研究密码技术的数学理论与基础、密码协议的设计与分析、密码技术的应用以及信息系统安全工程。
3、神经网络理论及应用。本方向主要研究模糊神经网络、模糊系统以及利用神经网络的方法对工程上的一些数学问题进行求解。
吉首大学硕士研究生入学考试自命题考试大纲
考试科目代码:[714]
考试科目名称:高等数学
第一部分
考试形式与试卷结构
一、试卷成绩及考试时间
本试卷满分为 150 分,考试时间为 180 分钟。
二、答题方式
答题方式为闭卷、笔试
三、题型结构
(一)单项选择题 :8 小题,每小题 4 分,共 32 分
(二)填空题:6 小题,每小题 4 分,共 24 分
(三)解答题(包括证明题): 9 小题,共 94 分
第二部分
考试内容与考试要求
一、函数、极限、连续
考试内容
函数的概念及表示法,函数的有界性,单调性,周期性和奇偶性, 复合函数,反函数,
分段函数和隐函数,基本初等函数的性质及其图形,初等函数,函数关系的建立.
数列极限与函数极限的定义及其性质,函数的左极限和右极限,无穷小量和无穷大量的
概念及其关系,无穷小量的性质及无穷小量的比较, 极限的四则运算, 极限存在的两个准
则:单调有界准则和夹逼准则,两个重要极限:
0
sin
lim
1
x
x
x
1
l
im
1
x
x
e
x
函数连续的概念,函数间断点的类型,初等函数的连续性,闭区间上连续函数的性质.
考试要求
1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.
2.了解函数的有界性,单调性,周期性和奇偶性.
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
4.掌握基本初等函数的性质及其图形,了解初等函数的概念.
5.了解数列极限和函数极限(包括左极限与右极限)的概念.
6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个
重要极限求极限的方法.
7.理解无穷小的概念和基本性质,掌握无穷小量的比较方法,了解无穷大量的概念及
其与无穷小量的关系.
8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、
最大值和最小值定理.介值定理),并会应用这些性质.
二、一元函数微分学考试内容
导数和微分的概念,导数的几何意义, 函数的可导性与连续性之间的关系,平面曲线
的切线与法线,导数和微分的四则运算, 基本初等函数的导数, 复合函数、反函数和隐函
数的微分法,高阶导数,一阶微分形式的不变性,微分中值定理,洛必达(L'Hospital)法
则,函数单调性的判别,函数的极值,函数图形的凹凸性,拐点及渐近线,函数图形的描绘,
函数的最大值与最小值.
考试要求
1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含
边际与弹性的概念),会求平面曲线的切线方程和法线方程.
2.掌握基本初等函数的导数公式,导数的四则运算法则及复合函数的求导法则,会求
分段函数的导数, 会求反函数与隐函数的导数.
3.了解高阶导数的概念,会求简单函数的高阶导数.
4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的
微分.
5.理解罗尔( Rolle)定理,拉格朗日( Lagrange)中值定理,了解泰勒定理.柯西(Cauchy)
中值定理,掌握这四个定理的简单应用.
6.会用洛必达法则求极限.
7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小
值的求法及其应用.
8.会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数 f (x) 具有二阶导数.当
f (x) 0 时, f (x) 的图形是凹的;当 f (x) 0 时, f (x) 的图形是凸的),会求函数图形
的拐点和渐近线.
9.会描述简单函数的图形.
三、一元函数积分学
考试内容
原函数和不定积分的概念,不定积分的基本性质,基本积分公式,定积分的概念和基本
性质,定积分中值定理,积分上限的函数及其导数,牛顿一莱布尼茨(Newton-Leibniz)公
式,不定积分和定积分的换元积分法与分部积分法,反常(广义)积分,定积分的应用.
考试要求
1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不
定积分的换元积分法和分部积分法.
2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求
它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.
3.会利用定积分计算平面图形的面积,旋转体的体积,会利用定积分求解简单的应用
问题.
4.了解反常积分的概念,会计算反常积分.
四、多元函数微积分学
考试内容
多元函数的概念 ,二元函数的几何意义 ,二元函数的极限与连续的概念 ,有界闭区
域上二元连续函数的性质,多元函数偏导数的概念与计算,多元复合函数的求导法与隐函数
求导法, 二阶偏导数, 全微分, 多元函数的极值和条件极值,最大值和最小值. 二重积分的概念,基本性质和计算.
考试要求
1.了解多元函数的概念,了解二元函数的几何意义.
2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.
3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全
微分,会求多元隐函数的偏导数.
4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二
元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求
简单多元函数的最大值和最小值,并会解决简单的应用问题.
5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).
五、无穷级数
考试内容
常数项级数收敛与发散的概念,收敛级数的和的概念,级数的基本性质与收敛的必要条
件,几何级数与 p 级数及其收敛性,正项级数收敛性的判别法,任意项级数的绝对收敛与
条件收敛,交错级数与莱布尼茨定理,幂级数及其收敛半径.收敛区间(指开区间)和收敛
域,幂级数的和函数,幂级数在其收敛区间内的基本性质,简单幂级数的和函数的求法,初
等函数的幂级数展开式.
考试要求
1.了解级数的收敛与发散,收敛级数的和的概念.
2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及 p 级数的收敛与发散
的条件,掌握正项级数收敛性的比较判别法和比值判别法.
3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错
级数的莱布尼茨判别法.
4.会求幂级数的收敛半径、收敛区间及收敛域.
5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),
会求简单幂级数在其收敛区间内的和函数.
6.了解ex
,sin x ,cos x ,ln(1 x) 及(1 x) 的麦克劳林(Maclaurin)展开式.
六、常微分方程
考试内容
常微分方程的基本概念,变量可分离的微分方程,齐次微分方程,一阶线性微分方程,
线性微分方程解的性质及解的结构定理,二阶常系数齐次线性微分方程及简单的非齐次线性
微分方程,微分方程的简单应用.
考试要求
1.了解微分方程及其阶、解、通解、初始条件和特解等概念.
2.掌握变量可分离的微分方程,齐次微分方程和一阶线性微分方程的求解方法.
3.会解二阶常系数齐次线性微分方程.
4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式,指数函数,正
弦函数,余弦函数的二阶常系数非齐次线性微分方程.
5.会用微分方程求解简单的应用问题.
第三部分
参考书目
1、《高等数学》(上、下册),黄立宏主编,复旦大学出版社,第四版。2、《高等数学》(上、下册),同济大学应用数学系主编,高等教育出版社,第七版。
数学与统计学院的前身为数学科,创办于1958年9月。现设有数学与应用数学、信息与计算科学、统计学3个本科专业,拥有数学及统计学两个一级学科硕士点,可招收基础数学、应用数学、计算数学、运筹学与控制论、概率论与数理统计、经济统计、应用统计等10个二级学科硕士研究生。设有数学与应用数学系、信息与计算科学系、统计学系、高等数学教学部等教学机构。学院拥有400多个计算机终端,方便快捷的校园网,为学生的学习创造了良好的学习条件和环境。
学院现有教授10名,副教授20人,博士12人。近几年来,主持国家自然科学基金项目6项,省自然科学基金项目、省教育厅重点项目等省部级科研项目20余项,获国家优秀教学成果奖二等奖1项,湖南省自然科学一等奖1项,省优秀教学成果奖4项。
在多年的办学过程中,与国内外众多知名高校建立了良好的学术合作交流关系,建立了与中山大学、中南大学、湖南师范大学本科生联合培养机制。在办学实践中,注重学生应用、创新能力的培养,铸造了“尊师、守纪、团结、奋进”的学院精神,形成了“勤奋、严谨、求是、创新”的学风。自2003年以来,多次在全国数学建模竞赛、全国大学生数学竞赛中获奖,特别是在全国数学建模竞赛中,近5年来获国家一等奖6项,二等奖4项,湖南省一、二、三等奖二十余项。
基本信息
专业名称:数学 专业代码:070100 门类/类别:理学 学科/类别:数学
专业介绍
陆军装甲兵学院为例
一、培养目标
培养政治合格、军事过硬、作风优良、纪律严明,掌握数学学科较坚实宽广的基础理论和较系统深入的专门知识;熟悉数学学科有关领域的前沿动态,掌握必要的相关学科知识,具有从事科学研究和解决本专业领域技术难题的能力,能够适应军队现代化建设和信息化条件下联合作战需要和基层部队任职岗位需求的高层次应用型人才。
二、专业简介
数学学科于1998年开始挂靠计算机科学与技术专业招收研究生,2005年获得应用数学二级学科授予权,形成了具有军事装备科学与技术应用背景的应用数学研究重点领域。2011年获得一级硕士学位授予权。目前共培养了23名硕士研究生,其中1名研究生的论文被评为全军、总装备部优秀硕士学位论文,1名研究生的论文被评为学院优秀硕士学位论文。
三、研究方向简介
(1)微分几何及其应用
重点研究微分流形的解析结构和这种结构所蕴含的几何现象,以及辛几何与李群理论在动力学系统中的数值计算方法。本方向主要开展如下研究内容:子流形的几何学、动力学系统的几何积分方法、军事科学中微分动力学模型研究。
(2)分形计算方法及其在信息综合处理中的应用
重点研究信息安全领域的前沿课题,在军事信息综合处理方面有着广泛的应用价值。本方向主要开展如下领域的研究工作:分形计算方法研究、分形几何在数字图像处理中的应用、分形在信息综合处理中的应用。
(3)随机分析及统计应用研究
重点研究武器装备科学实验过程中的各类型试验数据统计规律等相关问题,为军事装备科研领域的定量分析研究提供科学依据。本方向重点关注的研究领域包括:随机分析理论及其在军事科学技术中的应用研究、统计分析与计算、可靠性统计理论及应用研究。
(4)非线性分析理论方法及应用
重点研究运用非线性分析的理论、方法对军事科学技术研究领域中的若干非线性科学问题进行数学建模、模拟仿真,对军事复杂系统的非线性现象的内在本质、控制策略进行定量分析。本方向重点关注如下问题的研究:军事复杂系统建模与辨识的理论与方法研究、非线性混沌系统的脉冲控制及其在安全保密通讯中的应用研究。
(5)数学物理反演方法及其应用
重点研究数学物理反问题的理论研究和实际应用两个方面。本方向重点关注如下研究领域:数学物理反演方法研究、非均匀介质中波动信号的数值模拟仿真技术研究、微观物质的数值模拟与建模。
(6)非线性动力系统稳定性分析及建模仿真
重点研究军事装备科学与技术应用背景下,涉及运筹学、控制论及计算机仿真模拟等领域的相关问题。本方向重点关注如下研究领域:非线性动力系统的稳定性分析研究、非线性动力系统的建模与仿真研究。
四、导师队伍
本学科有教授8名,副教授12名,有总装备部“1153人才工程”第一层次培养对象1名,第二层次培养对象2名,分别有1人次获得总参优秀教员、全军优秀教员、总装教育教学先进个人、总装军事训练先进个人、军队院校育才奖“金奖”、优秀研究生指导教师等荣誉称号,6人次获得军队院校育才奖“银奖”,1人获得军队优秀人才岗位一类津贴。
五、教学科研条件
拥有复杂系统建模实验室,该实验室位于基础部办公楼,占地面积150平方米,于2006年开始建设并投入使用。总建设经费100万元。实验室主要承担数学专业研究生进行数据处理与复杂系统建模。
六、教学科研学术成果
本学科先后获得军队教学成果二等奖1项,军队科技进步奖三等1项,总装备部优质课1门,在国内外相关学术期刊发表论文520余篇,有70余篇学术论文被SCI、EI检索收录,其研究成果受到国内外的关注,并与国内外一些高等学校和科研院所建立了广泛的学术联系。
专业点分布
陆军装甲兵学院 北京化工大学 清华大学 北京工业大学 北京航空航天大学 北京理工大学 北方工业大学 北京邮电大学 中国农业大学 北京信息科技大学 中国民航大学 河北工业大学 华北理工大学 河北科技大学 中央司法警官学院 中北大学 太原科技大学 山西师范大学 太原师范学院 内蒙古大学 大连海事大学 沈阳航空航天大学 大连交通大学 长春理工大学 北华大学 东北电力大学 哈尔滨理工大学 上海交通大学 华东理工大学 河海大学 南京信息工程大学 江苏大学 浙江理工大学 浙江工业大学 杭州电子科技大学 温州大学 浙江海洋大学 绍兴文理学院 淮北师范大学 安徽师范大学 合肥工业大学 安徽理工大学 华侨大学 东华理工大学 华东交通大学 江西科技师范大学 烟台大学 山东理工大学 曲阜师范大学 鲁东大学 齐鲁工业大学 中国石油大学(华东) 河南理工大学 河南师范大学 武汉科技大学 三峡大学 湖南科技大学 湖南大学 湖南工业大学 国防科技大学 吉首大学 湘潭大学 湖南理工学院 南方科技大学 广东工业大学 中山大学 深圳大学 桂林电子科技大学 海南师范大学 重庆邮电大学 四川理工学院 贵州大学 空军工程大学 西安电子科技大学 西安建筑科技大学 延安大学 青海民族大学 宁夏大学 新疆大学
专业院校排名
0701 数学
本一级学科中,全国具有“博士授权”的高校共 76 所,本次参评69 所;部分具有“硕士授权”的高校 也参加了评估;参评高校共计 182 所(注:评估结果相同的高校排序不分先后,按学校代码排列)
序号 |
学校代码 |
学校名称 |
评选结果 |
1 |
10001 |
北京大学 |
A+ |
2 |
10246 |
复旦大学 |
A+ |
3 |
10422 |
山东大学 |
A+ |
4 |
10003 |
清华大学 |
A |
5 |
10027 |
北京师范大学 |
A |
6 |
10055 |
南开大学 |
A |
7 |
10248 |
上海交通大学 |
A |
8 |
10358 |
中国科学技术大学 |
A |
9 |
10698 |
西安交通大学 |
A |
10 |
10183 |
吉林大学 |
A- |
11 |
10213 |
哈尔滨工业大学 |
A- |
12 |
10247 |
同济大学 |
A- |
13 |
10269 |
华东师范大学 |
A- |
14 |
10284 |
南京大学 |
A- |
15 |
10335 |
浙江大学 |
A- |
16 |
10486 |
武汉大学 |
A- |
17 |
10558 |
中山大学 |
A- |
18 |
10610 |
四川大学 |
A- |
19 |
10028 |
首都师范大学 |
B+ |
20 |
10141 |
大连理工大学 |
B+ |
21 |
10200 |
东北师范大学 |
B+ |
22 |
10280 |
上海大学 |
B+ |
23 |
10285 |
苏州大学 |
B+ |
24 |
10319 |
南京师范大学 |
B+ |
25 |
10345 |
浙江师范大学 |
B+ |
26 |
10384 |
厦门大学 |
B+ |
27 |
10487 |
华中科技大学 |
B+ |
28 |
10511 |
华中师范大学 |
B+ |
29 |
10530 |
湘潭大学 |
B+ |
30 |
10532 |
湖南大学 |
B+ |
31 |
10533 |
中南大学 |
B+ |
32 |
10542 |
湖南师范大学 |
B+ |
33 |
10561 |
华南理工大学 |
B+ |
34 |
10574 |
华南师范大学 |
B+ |
35 |
10611 |
重庆大学 |
B+ |
36 |
10718 |
陕西师范大学 |
B+ |
37 |
10730 |
兰州大学 |
B+ |
38 |
90002 |
国防科技大学 |
B+ |
39 |
10002 |
中国人民大学 |
B |
40 |
10005 |
北京工业大学 |
B |
41 |
10094 |
河北师范大学 |
B |
42 |
10270 |
上海师范大学 |
B |
43 |
10290 |
中国矿业大学 |
B |
44 |
10357 |
安徽大学 |
B |
45 |
10386 |
福州大学 |
B |
46 |
10394 |
福建师范大学 |
B |
47 |
10459 |
郑州大学 |
B |
48 |
10635 |
西南大学 |
B |
49 |
10673 |
云南大学 |
B |
50 |
10697 |
西北大学 |
B |
51 |
10699 |
西北工业大学 |
B |
52 |
10736 |
西北师范大学 |
B |
53 |
10755 |
新疆大学 |
B |
54 |
11078 |
广州大学 |
B |
55 |
10004 |
北京交通大学 |
B- |
56 |
10008 |
北京科技大学 |
B- |
57 |
10108 |
山西大学 |
B- |
58 |
10126 |
内蒙古大学 |
B- |
59 |
10251 |
华东理工大学 |
B- |
60 |
10287 |
南京航空航天大学 |
B- |
61 |
10288 |
南京理工大学 |
B- |
62 |
10300 |
南京信息工程大学 |
B- |
63 |
10320 |
江苏师范大学 |
B- |
64 |
10359 |
合肥工业大学 |
B- |
65 |
10414 |
江西师范大学 |
B- |
66 |
10445 |
山东师范大学 |
B- |
67 |
10446 |
曲阜师范大学 |
B- |
68 |
10512 |
湖北大学 |
B- |
69 |
10636 |
四川师范大学 |
B- |
70 |
10637 |
重庆师范大学 |
B- |
71 |
10657 |
贵州大学 |
B- |
72 |
11117 |
扬州大学 |
B- |
73 |
11646 |
宁波大学 |
B- |
74 |
10009 |
北方工业大学 |
C+ |
75 |
10145 |
东北大学 |
C+ |
76 |
10165 |
辽宁师范大学 |
C+ |
77 |
10255 |
东华大学 |
C+ |
78 |
10299 |
江苏大学 |
C+ |
79 |
10338 |
浙江理工大学 |
C+ |
80 |
10346 |
杭州师范大学 |
C+ |
81 |
10351 |
温州大学 |
C+ |
82 |
10403 |
南昌大学 |
C+ |
83 |
10423 |
中国海洋大学 |
C+ |
84 |
10475 |
河南大学 |
C+ |
85 |
10476 |
河南师范大学 |
C+ |
86 |
10559 |
暨南大学 |
C+ |
87 |
10560 |
汕头大学 |
C+ |
88 |
10593 |
广西大学 |
C+ |
89 |
10663 |
贵州师范大学 |
C+ |
90 |
10749 |
宁夏大学 |
C+ |
91 |
11414 |
中国石油大学 |
C+ |
92 |
10019 |
中国农业大学 |
C |
93 |
10079 |
华北电力大学 |
C |
94 |
10081 |
华北理工大学 |
C |
95 |
10110 |
中北大学 |
C |
96 |
10203 |
吉林师范大学 |
C |
97 |
10214 |
哈尔滨理工大学 |
C |
98 |
10231 |
哈尔滨师范大学 |
C |
99 |
10252 |
上海理工大学 |
C |
100 |
10337 |
浙江工业大学 |
C |
101 |
10370 |
安徽师范大学 |
C |
102 |
10491 |
中国地质大学 |
C |
103 |
10536 |
长沙理工大学 |
C |
104 |
10595 |
桂林电子科技大学 |
C |
105 |
10613 |
西南交通大学 |
C |
106 |
10616 |
成都理工大学 |
C |
107 |
10681 |
云南师范大学 |
C |
108 |
11066 |
烟台大学 |
C |
109 |
90006 |
解放军理工大学 |
C |
110 |
10078 |
华北水利水电大学 |
C- |
111 |
10118 |
山西师范大学 |
C- |
112 |
10140 |
辽宁大学 |
C- |
113 |
10166 |
沈阳师范大学 |
C- |
114 |
10167 |
渤海大学 |
C- |
115 |
10212 |
黑龙江大学 |
C- |
116 |
10294 |
河海大学 |
C- |
117 |
10390 |
集美大学 |
C- |
118 |
10460 |
河南理工大学 |
C- |
119 |
10477 |
信阳师范学院 |
C- |
120 |
10513 |
湖北师范大学 |
C- |
121 |
10608 |
广西民族大学 |
C- |
122 |
10615 |
西南石油大学 |
C- |
123 |
10638 |
西华师范大学 |
C- |
124 |
10674 |
昆明理工大学 |
C- |
125 |
11065 |
青岛大学 |
C- |
126 |
10010 |
北京化工大学 |
C- |
127 |
10059 |
中国民航大学 |
C- |
128 |
10065 |
天津师范大学 |
C- |
129 |
10075 |
河北大学 |
C- |
0701J3数学
基本信息
专业名称:数学 专业代码:0701J3 门类/类别:理学 学科/类别:数学
专业介绍
北京大学为例
据北京大学研究生院消息,2017年北京大学0701J3数据科学(数学)考研专业目录及考试科目已经公布,详情如下:
招生院系: |
前沿交叉学科研究院 |
计划招生数 |
123人 |
拟接收推免人数 |
80人 |
备注说明 |
拟招收博士研究生123人(其中包括:生命科学联合中心拟招收80人,生物与医药工程博士拟招收5人), 另与国家纳米中心联合培养名额单列。
其中直博生和本校硕博连读生占75%左右, 其余采用“申请-考核制”招生。
本学院除生物与医药工程博士的学习方式为非全日制,其他专业的学习方式均为全日制。 |
招生专业:数据科学(数学)(0701J3) |
计划招生数: |
|
拟接收推免人数: |
|
备注: |
|
研究方向 |
考试科目 |
专业院校排名
0701 数学
本一级学科中,全国具有“博士授权”的高校共 76 所,本次参评69 所;部分具有“硕士授权”的高校 也参加了评估;参评高校共计 182 所(注:评估结果相同的高校排序不分先后,按学校代码排列)
序号 |
学校代码 |
学校名称 |
评选结果 |
1 |
10001 |
北京大学 |
A+ |
2 |
10246 |
复旦大学 |
A+ |
3 |
10422 |
山东大学 |
A+ |
4 |
10003 |
清华大学 |
A |
5 |
10027 |
北京师范大学 |
A |
6 |
10055 |
南开大学 |
A |
7 |
10248 |
上海交通大学 |
A |
8 |
10358 |
中国科学技术大学 |
A |
9 |
10698 |
西安交通大学 |
A |
10 |
10183 |
吉林大学 |
A- |
11 |
10213 |
哈尔滨工业大学 |
A- |
12 |
10247 |
同济大学 |
A- |
13 |
10269 |
华东师范大学 |
A- |
14 |
10284 |
南京大学 |
A- |
15 |
10335 |
浙江大学 |
A- |
16 |
10486 |
武汉大学 |
A- |
17 |
10558 |
中山大学 |
A- |
18 |
10610 |
四川大学 |
A- |
19 |
10028 |
首都师范大学 |
B+ |
20 |
10141 |
大连理工大学 |
B+ |
21 |
10200 |
东北师范大学 |
B+ |
22 |
10280 |
上海大学 |
B+ |
23 |
10285 |
苏州大学 |
B+ |
24 |
10319 |
南京师范大学 |
B+ |
25 |
10345 |
浙江师范大学 |
B+ |
26 |
10384 |
厦门大学 |
B+ |
27 |
10487 |
华中科技大学 |
B+ |
28 |
10511 |
华中师范大学 |
B+ |
29 |
10530 |
湘潭大学 |
B+ |
30 |
10532 |
湖南大学 |
B+ |
31 |
10533 |
中南大学 |
B+ |
32 |
10542 |
湖南师范大学 |
B+ |
33 |
10561 |
华南理工大学 |
B+ |
34 |
10574 |
华南师范大学 |
B+ |
35 |
10611 |
重庆大学 |
B+ |
36 |
10718 |
陕西师范大学 |
B+ |
37 |
10730 |
兰州大学 |
B+ |
38 |
90002 |
国防科技大学 |
B+ |
39 |
10002 |
中国人民大学 |
B |
40 |
10005 |
北京工业大学 |
B |
41 |
10094 |
河北师范大学 |
B |
42 |
10270 |
上海师范大学 |
B |
43 |
10290 |
中国矿业大学 |
B |
44 |
10357 |
安徽大学 |
B |
45 |
10386 |
福州大学 |
B |
46 |
10394 |
福建师范大学 |
B |
47 |
10459 |
郑州大学 |
B |
48 |
10635 |
西南大学 |
B |
49 |
10673 |
云南大学 |
B |
50 |
10697 |
西北大学 |
B |
51 |
10699 |
西北工业大学 |
B |
52 |
10736 |
西北师范大学 |
B |
53 |
10755 |
新疆大学 |
B |
54 |
11078 |
广州大学 |
B |
55 |
10004 |
北京交通大学 |
B- |
56 |
10008 |
北京科技大学 |
B- |
57 |
10108 |
山西大学 |
B- |
58 |
10126 |
内蒙古大学 |
B- |
59 |
10251 |
华东理工大学 |
B- |
60 |
10287 |
南京航空航天大学 |
B- |
61 |
10288 |
南京理工大学 |
B- |
62 |
10300 |
南京信息工程大学 |
B- |
63 |
10320 |
江苏师范大学 |
B- |
64 |
10359 |
合肥工业大学 |
B- |
65 |
10414 |
江西师范大学 |
B- |
66 |
10445 |
山东师范大学 |
B- |
67 |
10446 |
曲阜师范大学 |
B- |
68 |
10512 |
湖北大学 |
B- |
69 |
10636 |
四川师范大学 |
B- |
70 |
10637 |
重庆师范大学 |
B- |
71 |
10657 |
贵州大学 |
B- |
72 |
11117 |
扬州大学 |
B- |
73 |
11646 |
宁波大学 |
B- |
74 |
10009 |
北方工业大学 |
C+ |
75 |
10145 |
东北大学 |
C+ |
76 |
10165 |
辽宁师范大学 |
C+ |
77 |
10255 |
东华大学 |
C+ |
78 |
10299 |
江苏大学 |
C+ |
79 |
10338 |
浙江理工大学 |
C+ |
80 |
10346 |
杭州师范大学 |
C+ |
81 |
10351 |
温州大学 |
C+ |
82 |
10403 |
南昌大学 |
C+ |
83 |
10423 |
中国海洋大学 |
C+ |
84 |
10475 |
河南大学 |
C+ |
85 |
10476 |
河南师范大学 |
C+ |
86 |
10559 |
暨南大学 |
C+ |
87 |
10560 |
汕头大学 |
C+ |
88 |
10593 |
广西大学 |
C+ |
89 |
10663 |
贵州师范大学 |
C+ |
90 |
10749 |
宁夏大学 |
C+ |
91 |
11414 |
中国石油大学 |
C+ |
92 |
10019 |
中国农业大学 |
C |
93 |
10079 |
华北电力大学 |
C |
94 |
10081 |
华北理工大学 |
C |
95 |
10110 |
中北大学 |
C |
96 |
10203 |
吉林师范大学 |
C |
97 |
10214 |
哈尔滨理工大学 |
C |
98 |
10231 |
哈尔滨师范大学 |
C |
99 |
10252 |
上海理工大学 |
C |
100 |
10337 |
浙江工业大学 |
C |
101 |
10370 |
安徽师范大学 |
C |
102 |
10491 |
中国地质大学 |
C |
103 |
10536 |
长沙理工大学 |
C |
104 |
10595 |
桂林电子科技大学 |
C |
105 |
10613 |
西南交通大学 |
C |
106 |
10616 |
成都理工大学 |
C |
107 |
10681 |
云南师范大学 |
C |
108 |
11066 |
烟台大学 |
C |
109 |
90006 |
解放军理工大学 |
C |
110 |
10078 |
华北水利水电大学 |
C- |
111 |
10118 |
山西师范大学 |
C- |
112 |
10140 |
辽宁大学 |
C- |
113 |
10166 |
沈阳师范大学 |
C- |
114 |
10167 |
渤海大学 |
C- |
115 |
10212 |
黑龙江大学 |
C- |
116 |
10294 |
河海大学 |
C- |
117 |
10390 |
集美大学 |
C- |
118 |
10460 |
河南理工大学 |
C- |
119 |
10477 |
信阳师范学院 |
C- |
120 |
10513 |
湖北师范大学 |
C- |
121 |
10608 |
广西民族大学 |
C- |
122 |
10615 |
西南石油大学 |
C- |
123 |
10638 |
西华师范大学 |
C- |
124 |
10674 |
昆明理工大学 |
C- |
125 |
11065 |
青岛大学 |
C- |
126 |
10010 |
北京化工大学 |
C- |
127 |
10059 |
中国民航大学 |
C- |
128 |
10065 |
天津师范大学 |
C- |
129 |
10075 |
河北大学 |
C- |
数学研究生考试科目:
教材方面:
①《高等数学》(上、下):高等教育出版社第6版同济大学数学系
②《工程数学线性代数》(第五版)同济大学数学系
高等教育出版社
③《概率论与数理统计》:高等教育出版社浙大第4版盛骤
(二)教材辅导书:
①同济大学数学系:高等数学习题全解指南(上下册)高等教育出版社
②工程数学线性代数(第五版)同济大学数学系
高等教育出版社辅导书
③概率论与数理统计:高等教育出版社浙大第4版盛骤
辅导书
(三)复习用书
①李永乐:《2014年数学复习全书》中国政法大学出版社
李永乐:《2014数学历年试题解析》中国政法大学出版社
②李永乐:《基础660》西安交通大学出版社
③2014教育部考试中心的《考试分析》高等教育出版社
④2014教育部考试中心的《大纲解析》高等教育出版社
⑤李永乐、李正元:《超越135分》和《最后五套卷》
数学考研参考书:
下面,本文先从当前的考纲入手,来有针对性地进行分析和指导。事实上,
数学科目(学硕)的考试,在考试内容和分值分配上,可作如下分类:
卷种 考试内容 |
数学(一) |
数学(二) |
数学(三) |
高等数学 (微积分) |
82(分) |
116(分) |
82(分) |
线性代数 |
34(分) |
34(分) |
34(分) |
概率论与 数理统计 |
34(分) |
—— |
34(分) |
总分 |
150(分) |
150(分) |
150(分) |
由上述表格不难看出,无论是哪类数学,高等数学都占了相当大的比重,其次是线性代数和
概率论与数理统计。这其中,对于相应科目参考书的选择,可参见以下表格:
|
数学(一) |
数学(二) |
数学(三) |
高等数学 |
《高等数学》第六版(上下两册),同济大学数学系编,高等教育出版社。 |
线性代数 |
《工程数学—线性代数》第五版,同济大学数学系编,高等教育出版社。 |
概率论与数理统计 |
《概率论与数理统计》第四版,浙江大学 盛骤、谢千式、潘承毅编,高等教育出版社。
|
数学专业研究生就业:
中国科学院、中国工程院院士王选教授在北大方正软件技术学院开学典礼上寄语大学生要成为一个合格的软件人才,需要有扎实的数学功底,严密的逻辑思维能力。而严密的逻辑思维能力,来自于深厚扎实的数学功底。可见数学与应用数学专业是从事其他相关专业的基础。随着科技事业的发展和普及,数学专业与其他相关专业的联系将会更加紧密,数学专业知识将会得到更广泛的应用。
随着教育人事制度的改革和教师聘任制的全面推行,普通中学师资的来源正在打破行业地域界线。由师范院校培养输出教师的传统模式已经不能适应现代教育对复合型人才的需求。综合院校在培养复合型人才方面有着德天独厚的学科资源优势。报考综合院校的数学与应用数学专业,不仅有利于未来择业,也有利于个人发展成才。
家教业的逐渐兴起,也为数学与应用数学专业毕业生提供了一条重要的就业渠道。由于数学家教对专业知识和教学辅导艺术的要求比较高,家长不易操作或无暇顾及,于是聘请数学家教已成为许多家庭的必然选择。在未来5~8年以后,数学家教将会成为一种专门的职业而广受欢迎。把家教作为一种职业,也必定会大有文章可做。
数学与应用数学是计算机专业的基础和上升的平台,是与计算机科学与技术联系最为紧密的专业之一。该专业属于基础型专业,就业面较宽,不过考研仍然是该专业毕业生的首选。在日常生活中,从天气预报到股票涨落,到处充斥着数学的描述和分析方法。北京市需求毕业生人数最多的十大专业中,数学与应用数学专业需求量位居前列。可见,数学人才的需求量较大,就业前景看好。而且可以预见,随着经济和社会的发展,市场对数学与应用数学专业人才的需求将会越来越多,其就业前景比较广阔。
另外,金融数学家已经是华尔街最抢手的人才之一。在保险公司中地位和收入最高的,可能就是总精算师。在美国,芝加哥大学、加州伯克利大学、斯坦福大学、卡内基·梅隆大学和纽约大学等著名学府,都已经设立了金融数学相关的学位或专业证书教育。尽管如此,在美国很吃香的保险精算师,很多都是数学专业出身。美国花旗银行副主席保尔·柯斯林也曾说过说:一个从事银行业务而不懂数学的人,无非只能做些无关紧要的小事。除了保险精算师以外,由于经济学也引入了数学建模,因此懂经济原理的数学人才也被用人单位广泛接纳,还有国际经济与贸易、工商管理、化工制药、通讯工程、建筑设计等,都离不开相关的数学专业知识。
由于数学与应用数学专业与其他相关专业联系紧密,以它为依托的相近专业可供选择的比较多,因而报考该专业较之其他专业回旋余地大,重新择业改行也容易得多,有利于将来更好的就业。
通过以上了解,我们可以看到数学专业在未来就业市场上确实有很大的优势,我们选择了数学专业,就要有进一步深造的计划,先打好了本科阶段的数学基础,再从其他方向寻求发展,就会更容易突破。
数学考试科目
政治,英语,数学分析,高等数学,这四个一般是初试必考的。至于复试就每个学校都不太一致了,不过一般都是考微分方程与复变函数。
数学专业研究生分好几个方向,有应用数学、计算数学以及概率论与数理统计等,一般数分高代是基础一定会考,有的学校是两门专业课就是数分与高代,也有的学校是数分高代合并算一门专业课,然后再考其他一门专业课,例如概率论方向有可能会考概率或统计学。
数学参考书目
1、教材比较推荐的有:
高数教材:《高等数学》——同济版;
线代教材:《线性代数》——同济版、清华版;
概率教材:《概率论与数理统计》——浙江大学盛骤版
2、复习全书推荐的有:
《数学复习全书》——李永乐;
《线性代数辅导讲义》——李永乐;
《高数18讲》——张宇
3、真题、习题类推荐的依次有:
《数学历年真题解析》——李永乐;
《数学基础过关660题》——李永乐;
《全真模拟经典400题》——李永乐;
《接力题典1800题》——汤家凤
数学考研方向
以复旦大学为例
专业代码、名称及研究方向 |
学习方式 |
人数 |
考试科目 |
备注 |
018 数学科学学院 |
|
93 |
|
本院系拟招收学术学位推免生32人, 拟招收专业学位推免生51人。实际招生数视生源情况调整。 |
025100 金融(专业学位) |
|
35 |
|
本专业拟招收推免生34人。 |
01金融工程与管理
02风险管理与保险精算
13随机金融与风险分析
14金融衍生品的定价与计算 |
全日制 |
|
①101思想政治理论;②204英语二;③303数学三;④431金融学综合 |
025200 应用统计(专业学位) |
|
18 |
|
本专业拟招收推免生17人。 |
01高维数据分析
02散乱数据拟合
03统计计算方法 |
全日制 |
|
①101思想政治理论;②204英语二;③303数学三;④432统计学 |
070101 基础数学(学术学位) |
|
14 |
|
分析包括数学分析60%及常微分方程20%、复变函数20%、实变函数20%,其中后三部分任选两部分;代数与几何包括高等代数70%及抽象代数(群、环、域)30%、微分几何30%,其中后两部分任选一部分。本专业拟招收推免生11人。 |
01微分几何
02数学物理
03偏微分方程
04泛函分析
05代数学
06代数几何
07复变函数论
08动力系统
09数论
10拓扑学
11调和分析 |
全日制 |
|
①101思想政治理论;②201英语一;③719分析;④835代数与几何 |
070102 计算数学(学术学位) |
|
6 |
|
本专业拟招收推免生5人。 |
01数值线性代数
02新型算法
03偏微分方程数值解
04并行算法
05数学物理反问题 |
全日制 |
|
①101思想政治理论;②201英语一;③719分析;④835代数与几何 |
070103 概率论与数理统计(学术学位) |
|
3 |
|
本专业拟招收推免生2人。 |
01随机过程
02随机分析及其应用 |
全日制 |
|
①101思想政治理论;②201英语一;③719分析;④835代数与几何 |
070104 应用数学(学术学位) |
|
12 |
|
本专业拟招收推免生10人。 |
01计算几何
02应用偏微分方程
03工业应用数学
04神经网络的数学方法与应用
05非线性科学
06精算学
07计算系统生物学 |
全日制 |
|
①101思想政治理论;②201英语一(或)241法语;③719分析;④835代数与几何 |
070105 运筹学与控制论(学术学位) |
|
5 |
|
本专业拟招收推免生4人。 |
01最优控制理论及其应用
02随机控制理论与数学金融 |
全日制 |
|
①101思想政治理论;②201英语一;③719分析;④835代数与几何 |
数学就业前景
数学与应用数学专业就业前景很好,毕业生主要在教育类企业、金融类企业从事数学教师、数学教研、教学产品研发、精算师、证券分析、金融研究等。
就业前景
应用数学专业属于基础专业,是其他相关专业的“母专业”。无论是进行科研数据分析、软件开发、三维动画制作还是从事金融保险,国际经济与贸易、工商管理、化工制药、通讯工程、建筑设计等,都离不开相关的数学专业知识,数学专业与其他相关专业的联系将会更加紧密,数学专业知识将会得到更广泛的应用。
由于数学与应用数学专业与其他相关专业联系紧密,以它为依托的相近专业可供选择的比较多,因而报考该专业较之其他专业回旋余地大,重新择业改行也容易得多,有利于将来更好的就业。
家教业的逐渐兴起,也为数学与应用数学专业毕业生提供了一条重要的就业渠道。由于数学家教对专业知识和教学辅导艺术的要求比较高,家长不易操作或无暇顾及,于是聘请数学家教已成为许多家庭的必然选择。
数学与应用数学专业毕业生主要到科技、教育和经济部门从事研究、教学工作或在生产经营及管理部门从事实际应用、开发研究和管理工作。能胜任高等院校、科研院所、企业和其他单位的教学、科研技术和技术管理工作。