2021贵州师范大学602自命题数学专业研究生考试大纲的内容如下,更多考研资讯请关注我们考研派网站的更新!敬请收藏本站。或下载我们的考研派APP和考研派微信公众号(里面有非常多的免费考研资源可以领取哦)[2021贵州师范大学816中外文学史专业基础专业研究生考试大纲] [2021贵州师范大学816中外文学史专业基础专业研究生考试大纲] [2021贵州师范大学815法学综合二专业基础专业研究生考试大纲] [2021贵州师范大学历史学专业基础专业基础专业研究生考试大纲] [2021贵州师范大学西方政治思想史专业基础专业研究生考试大纲] [2021贵州师范大学811西方哲学史专业基础专业研究生考试大纲]
为你答疑,送资源
95%的同学还阅读了: [2021贵州师范大学研究生招生] [贵州师范大学研究生分数线[2013-2020]] [贵州师范大学王牌专业排名] [贵州师范大学考研难吗] [贵州师范大学研究生院] [贵州师范大学考研群] [贵州师范大学研究生学费] [贵州师范大学研究生奖学金] [贵州师范大学研究生辅导] [贵州师范大学在职研究生招生简章] [考研国家线[2006-2020]] [2021年考研时间:报名日期和考试时间]
2021贵州师范大学602自命题数学专业研究生考试大纲正文
一、考查目标《自命题数学》是我校招收全日制环境科学与工程硕士研究生而设置的具有选拔性质的入学考试科目。其目的是考察考生对高等数学和线性代数各项内容的掌握程度。要求考生熟悉相关基本概念和基本理论,掌握基本思想和方法, 具有一定的抽象思维能力、较强的逻辑推理能力和运算能力。为我校环境科学和环境工程专业择优选拔硕士研究生提供依据。
二、考试形式和试卷结构
(一)试卷满分及考试时间
试卷满分为150分,考试时间为180分钟。
(二)答题方式
答题方式为闭卷、笔试。
(三)试卷内容结构
高等教学 约78%;
线性代数 约22%。
(四)试卷题型结构
单项选择题 8小题,每小题4分,共32分;
填空题 6小题,每小题4分,共24分;
解答题(包括证明题) 9小题,共94分。
三、考察范围
高等数学
(一)函数、极限、连续
函数的概念及表示法;函数的有界性、单调性、周期性和奇偶性;复合函数、反函数、分段函数和隐函数;基本初等函数的性质及其图形;初等函数;函数关系的建立;数列极限与函数极限的定义及其性质;函数的左极限与右极限;无穷小量和无穷大量的概念及其关系;无穷小量的性质及无穷小量的比较;极限的四则运算;极限存在的两个准则:单调有界准则和夹逼准则;两个重要极限:
, ;
函数连续的概念;函数间断点的类型;初等函数的连续性。
(二)一元函数微分学
导数和微分的概念;导数的几何意义和物理意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;导数和微分的四则运算;基本初等函数的导数;复合函数、反函数、隐函数以及参数方程所确定的函数的微分法;高阶导数;一阶微分形式的不变性;微分中值定理;洛必达(L'Hospital)法则;函数单调性的判别;函数的极值;函数图形的凹凸性、拐点及渐近线;函数图形的描绘;函数的最大值与最小值。
(三)一元函数积分学
原函数和不定积分的概念;不定积分的基本性质;基本积分公式;定积分的概念和基本性质;定积分中值定理;积分上限的函数及其导数;
牛顿-莱布尼茨(Newton-Leibniz)公式;不定积分和定积分的换元积分法与分部积分法;有理函数、三角函数的有理式和简单无理函数的积分、反常(广义)积分。
(四)多元函数微积分学
多元函数的概念;二元函数的几何意义;二元函数的极限与连续的概念;
有界闭区域上二元连续函数的性质;多元函数的偏导数和全微分;
多元复合函数、隐函数的求导法;二阶偏导数;多元函数的极值和条件极值、最大值和最小值;二重积分的概念、基本性质和计算。
(五)常微分方程
常微分方程的基本概念;变量可分离的微分方程;齐次微分方程;一阶线性微分方程;可降阶的高阶微分方程。
线性代数
(一)行列式
行列式的概念和基本性质;行列式按行(列)展开定理。
(二)矩阵
矩阵的概念;矩阵的线性运算;矩阵的乘法;方阵的幂;
方阵乘积的行列式;矩阵的转置;逆矩阵的概念和性质;
矩阵可逆的充分必要条件;伴随矩阵;矩阵的初等变换;
初等矩阵;矩阵的秩;矩阵的等价;分块矩阵及其运算。
(三)向量
向量的概念;向量的线性组合和线性表示;向量组的线性相关与线性无关;向量组的极大线性无关组;等价向量组;向量组的秩;向量组的秩与矩阵的秩之间的关系;向量的内积;线性无关向量组的正交规范化方法。
(四)线性方程组
线性方程组的克拉默(Cramer)法则;齐次线性方程组有非零解的充分必要条件;非齐次线性方程组有解的充分必要条件;线性方程组解的性质和解的结构;齐次线性方程组的基础解系和通解;非齐次线性方程组的通解。
(五)矩阵的特征值和特征向量
矩阵的特征值和特征向量的概念、性质;相似矩阵的概念及性质;矩阵可相似对角化的充分必要条件及相似对角矩阵;实对称矩阵的特征值、特征向量及其相似对角矩阵。
(六)二次型
二次型及其矩阵表示;合同变换与合同矩阵;二次型的秩;惯性定理;二次型的标准形和规范形;用正交变换和配方法化二次型为标准形;二次型及其矩阵的正定性。
本文来源:http://m.okaoyan.com/guizhoushifandaxue/cankaoshumu_372325.html