发布时间:2021-09-01 编辑:考研派小莉 推荐访问:
2022年武汉纺织大学硕士研究生考试科目《高等数学》考试大纲及参考书目

2022年武汉纺织大学硕士研究生考试科目《高等数学》考试大纲及参考书目的内容如下,更多考研资讯请关注我们考研派网站的更新!敬请收藏本站。或下载我们的考研派APP和考研派微信公众号(里面有非常多的免费考研资源可以领取哦)[2022年武汉纺织大学硕士研究生考试科目《管理学》考试大纲及参] [2022年武汉纺织大学硕士研究生考试科目《物理化学》考试大纲及] [2022年武汉纺织大学硕士研究生考试科目《电子技术基础》考试大] [2022年武汉纺织大学硕士研究生考试科目《机械设计》考试大纲及] [2022年武汉纺织大学硕士研究生考试科目《中国化的马克思主义理] [2022年武汉纺织大学硕士研究生考试科目《艺术学概论》考试大纲]

武汉纺织大学学姐微信
为你答疑,送资源

95%的同学还阅读了: [2021武汉纺织大学研究生招生目录] [武汉纺织大学研究生分数线[2013-2021]] [武汉纺织大学王牌专业排名] [武汉纺织大学考研难吗] [武汉纺织大学研究生院] [武汉纺织大学考研群] [武汉纺织大学研究生学费] [武汉纺织大学研究生辅导] [考研国家线[2006-2021]] [2021年考研时间:报名日期和考试时间]

2022年武汉纺织大学硕士研究生考试科目《高等数学》考试大纲及参考书目正文

考试科目代码 考试科目名称 考试大纲 参考书目
601 高等数学 参考书《高等数学》(第七版,上下册)同济大学数学教研室,高等教育出版社,共八个部分内容,填空题与选择题约40%,解答题(包括证明题)约60%。               一、函数、极限、连续
考试内容
函数的概念及表示法  函数的有界性、单调性、周期性和奇偶性  复合函数、反函数、分段函数和隐函数  基本初等函数的性质及其图形
数列极限与函数极限的概念  无穷小和无穷大的概念及其关系  无穷小的性质及无穷小的比较  极限的四则运算  极限存在的单调有界准则和夹逼准则  两个重要极限:
函数连续的概念  函数间断点的类型  初等函数的连续性  闭区间上连续函数的性质 
考试要求
1. 理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式。
2. 理解函数的有界性、单调性、周期性和奇偶性,掌握判断函数这些性质的方法。
3. 理解复合函数的概念,了解反函数及隐函数的概念。会求给定函数的复合函数和反函数。
4. 掌握基本初等函数的性质及其图形。
5. 理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系。
6. 掌握极限的性质及四则运算法则,会运用它们进行一些基本的判断和计算。
7. 掌握极限存在的两个准则,并会利用它们求极限。掌握利用两个重要极限求极限的方法。
8. 理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。
9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
10. 掌握连续函数的运算性质和初等函数的连续性,熟悉闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理等),并会应用这些性质证明相关问题。
二、一元函数微分学
考试内容
导数的概念  导数的几何意义和物理意义  函数的可导性与连续性之间的关系  平面曲线的切线和法线  基本初等函数的导数  导数的四则运算  复合函数、反函数、隐函数的导数的求法  参数方程所确定的函数的求导方法  高阶导数的概念和计算  微分的概念和几何意义  函数可微与可导的关系  微分的运算法则及函数微分的求法  一阶微分形式的不变性  微分中值定理  洛必达(L’Hospital)法则  泰勒(Taylor)公式  函数的极值  函数最大值和最小值  函数单调性  函数图形的凹凸性、拐点及渐近线  弧微分及曲率的计算
考试要求
1. 理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,掌握函数的可导性与连续性之间的关系。
2. 掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的求导公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。
3. 了解高阶导数的概念,会求简单函数的高阶导数。
4. 会求分段函数的一阶、二阶导数。
5. 会求隐函数和由参数方程所确定的函数的一阶、二阶导数。
6. 会求反函数的导数。
7. 理解并会应用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理。
8. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用。
9. 会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直渐近线。
10. 掌握用洛必达法则求未定式极限的方法。
11.了解曲率和曲率半径的概念,会计算曲率和曲率半径。

三、一元函数积分学
考试内容
原函数和不定积分的概念  不定积分的基本性质  基本积分公式  定积分的概念和基本性质  定积分中值定理  变上限定积分定义的函数及其导数  牛顿-莱布尼兹(Newton-Leibniz)公式  不定积分和定积分的换元积分法与分部积分法  有理函数、三角函数的有理式和简单无理函数的积分  广义积分(无穷限积分、瑕积分)  定积分的应用
考试要求
1. 理解原函数的概念,理解不定积分和定积分的概念。
2. 熟练掌握不定积分的基本公式,熟练掌握不定积分和定积分的性质及定积分中值定理。掌握牛顿-莱布尼兹公式。熟练掌握不定积分和定积分的换元积分法与分部积分法。
3. 会求有理函数、三角函数有理式和简单无理函数的积分。
4. 理解变上限定积分定义的函数,会求它的导数。
5. 理解广义积分(无穷限积分、瑕积分)的概念,掌握无穷限积分、瑕积分的收敛性判别法,会计算一些简单的广义积分。
6. 会用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、截面面积为已知的立体体积、功、引力、压力)。
四、向量代数和空间解析几何
考试内容
向量的概念  向量的线性运算  向量的数量积、向量积和混合积  两向量垂直、平行的条件  两向量的夹角  向量的坐标表达式及其运算  单位向量  方向数与方向余弦  曲面方程和空间曲线方程的概念  平面方程、直线方程  平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件  点到平面和点到直线的距离  球面  母线平行于坐标轴的柱面  旋转轴为坐标轴的旋转曲面的方程  常用的二次曲面方程及其图形  空间曲线的参数方程和一般方程  空间曲线在坐标面上的投影曲线方程
考试要求
1. 熟悉空间直角坐标系,理解向量及其模的概念。
2. 熟练掌握向量的运算(线性运算、数量积、向量积),了解两个向量垂直、平行的条件。
3. 理解向量在轴上的投影,了解投影定理及投影的运算。理解方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法。
4. 掌握平面方程和空间直线方程及其求法。
5. 会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。
6. 会求空间两点间的距离、点到直线的距离以及点到平面的距离。
7. 了解空间曲线方程和曲面方程的概念。
8. 了解空间曲线的参数方程和一般方程。了解空间曲线在坐标平面上的投影,并会求其方程。
9. 了解常用二次曲面的方程、图形及其截痕,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。
五、多元函数微分学
考试内容
多元函数的概念  二元函数的几何意义  二元函数的极限和连续  有界闭区域上多元连续函数的性质  多元函数偏导数和全微分的概念及求法  全微分存在的必要条件和充分条件  多元复合函数、隐函数的求导法  高阶偏导数的求法  空间曲线的切线和法平面  曲面的切平面和法线  方向导数和梯度  二元函数的泰勒公式  多元函数的极值和条件极值  拉格朗日乘数法  多元函数的最大值、最小值及其简单应用  全微分在近似计算中的应用
考试要求
1. 理解多元函数的概念、理解二元函数的几何意义。
2. 理解二元函数的极限与连续性的概念及基本运算性质,了解二元函数累次极限和极限的关系。会判断二元函数在已知点处极限的存在性和连续性,了解有界闭区域上连续函数的性质。
3. 理解多元函数偏导数和全微分的概念。了解二元函数可微、偏导数存在及连续的关系,会求偏导数和全微分,了解二元函数两个混合偏导数相等的条件。了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。
4. 熟练掌握多元复合函数偏导数的求法。
5. 熟练掌握隐函数的求导法则。
6. 理解方向导数与梯度的概念并掌握其计算方法。
7. 理解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。
8. 了解二元函数的二阶泰勒公式。
9. 理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值、最小值,并会解决一些简单的应用问题。
10. 了解全微分在近似计算中的应用。
六、多元函数积分学
考试内容
二重积分、三重积分的概念及性质  二重积分与三重积分的计算和应用  两类曲线积分的概念、性质及计算  两类曲线积分之间的关系  格林(Green)公式  平面曲线积分与路径无关的条件  已知全微分求原函数  两类曲面积分的概念、性质及计算  两类曲面积分之间的关系  高斯(Gauss)公式  斯托克斯(Stokes)公式  散度、旋度的概念及计算  曲线积分和曲面积分的应用
考试要求
1. 理解二重积分、三重积分的概念,掌握重积分的性质。
2. 熟练掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标),掌握二重积分的换元法。
3. 理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。
4. 掌握计算两类曲线积分的方法。
5. 掌握格林公式,掌握平面曲线积分与路径无关的条件,会求全微分的原函数。
6. 了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,会用高斯公式、斯托克斯公式计算曲面、曲线积分。
7. 了解散度、旋度的概念,并会计算。
8. 了解含参变量的积分和莱布尼兹公式。
9. 会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、曲面的面积、物体的体积、曲线的弧长、物体的质量、重心、转动惯量、引力、功及流量等)。

七、无穷级数
考试内容
常数项级数及其收敛与发散的概念  收敛级数的和的概念  级数的基本性质与收敛的必要条件  几何级数与p级数及其收敛性  正项级数收敛性的判别法  交错级数与莱布尼兹定理  任意项级数的绝对收敛与条件收敛  函数项级数的收敛域、和函数的概念  幂级数及其收敛半径、收敛区间(指开区间)和收敛域  幂级数在其收敛区间内的基本性质  简单幂级数的和函数的求法  泰勒级数  初等函数的幂级数展开式  函数的幂级数展开式在近似计算中的应用  函数的傅里叶(Fourier)系数与傅里叶级数  狄利克雷(Dirichlet)定理  函数在[-l,l]上的傅里叶级数  函数在[0,l]上的正弦级数和余弦级数。
考试要求
1. 理解常数项级数的收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件。
2. 掌握几何级数与p级数的收敛与发散的条件。
3. 掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法。
4. 掌握交错级数的莱布尼兹判别法。
5. 了解任意项级数的绝对收敛与条件收敛的概念,以及绝对收敛与条件收敛的关系。
6. 了解函数项级数的收敛域及和函数的概念。
7. 理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法。
8. 了解幂级数在其收敛区间内的一些基本性质(和函数的连续性、逐项微分和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和。
9. 了解函数展开为泰勒级数的充分必要条件。
10. 掌握一些常见函数如ex、sin x、cos x、ln(1+x) 和(1+x)α 等函数的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数。
11. 会利用函数的幂级数展开式进行近似计算。
12.了解傅里叶级数的概念和狄利克雷定理,会将定义在[-l,l]上的函数展开为傅里叶级数,会将定义在[0,l]上的函数展开为正弦级数与余弦级数,会将周期为2 l的函数展开为傅里叶级数。

八、常微分方程
考试内容
常微分方程的基本概念  变量可分离的微分方程  齐次微分方程  一阶线性微分方程  伯努利(Bermoulli)方程  全微分方程  可用简单的变量代换求解的某些微分方程  可降价的高阶微分方程  线性微分方程解的性质及解的结构定理  二阶常系数齐次线性微分方程  二阶常系数非齐次线性微分方程  高于二阶的某些常系数齐次线性微分方程  欧拉(Euler)方程  微分方程的幂级数解法  简单的常系数线性微分方程组的解法  微分方程的简单应用
考试要求
1. 掌握微分方程及其阶、解、通解、初始条件和特解等概念。
2. 掌握变量可分离的微分方程及一阶线性微分方程的解法。
3. 会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程。
4. 会用降阶法解下列方程:y(n)=f(x),y”=f(x,y’) 和y”=f(y,y’)。
5. 理解线性微分方程解的性质及解的结构定理。了解解二阶非齐次线性微分方程的常数变易法。
6. 掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。
7. 会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程。
8. 会解欧拉方程。
9. 了解微分方程的幂级数解法。
10. 了解简单的常系数线性微分方程组的解法。
11. 会用微分方程解决一些简单的应用问题。

五、试卷结构
填空题与选择题 约40%
解答题(包括证明题) 约60%

六、主要参考书
《高等数学》(第七版,上下册)同济大学数学教研室,高等教育出版社
参考书《高等数学》(第七版,上下册)同济大学数学教研室,高等教育出版社,共八个部分内容,

添加武汉纺织大学学姐微信,或微信搜索公众号“考研派之家”,关注【考研派之家】微信公众号,在考研派之家微信号输入【武汉纺织大学考研分数线、武汉纺织大学报录比、武汉纺织大学考研群、武汉纺织大学学姐微信、武汉纺织大学考研真题、武汉纺织大学专业目录、武汉纺织大学排名、武汉纺织大学保研、武汉纺织大学公众号、武汉纺织大学研究生招生)】即可在手机上查看相对应武汉纺织大学考研信息或资源

武汉纺织大学考研公众号 考研派之家公众号

本文来源:http://m.okaoyan.com/wuhanfangzhidaxue/cankaoshumu_462163.html