2021杭州电子科技大学实变函数专业研究生考研考试大纲的内容如下,更多考研资讯请关注我们考研派网站的更新!敬请收藏本站。或下载我们的考研派APP和考研派微信公众号(里面有非常多的免费考研资源可以领取哦)[2021杭州电子科技大学误差理论与数据处理专业研究生考研考试大] [2021杭州电子科技大学数字电子技术专业研究生考研考试大纲] [2021杭州电子科技大学人体解剖与生理学专业研究生考研考试大纲] [2021杭州电子科技大学模拟电子技术专业研究生考研考试大纲] [2021杭州电子科技大学工程光学专业研究生考研考试大纲] [2021杭州电子科技大学电路专业研究生考研考试大纲]
为你答疑,送资源
95%的同学还阅读了: [2021杭州电子科技大学研究生招生] [杭州电子科技大学研究生分数线[2013-2020]] [杭州电子科技大学王牌专业排名] [杭州电子科技大学考研难吗] [杭州电子科技大学研究生院] [杭州电子科技大学考研群] [杭州电子科技大学研究生学费] [杭州电子科技大学研究生奖学金] [杭州电子科技大学研究生辅导] [杭州电子科技大学在职研究生招生简章] [考研国家线[2006-2020]] [2021年考研时间:报名日期和考试时间]
2021杭州电子科技大学实变函数专业研究生考研考试大纲正文
一、集合1.集合的描述与表示;子集、集合相等的概念;集合的并、交、差、补的定义及其运算性质;笛.摩根公式;
2.映射的概念,单射、满射、双射的概念;集合的基数、对等的概念;基数的比较;伯恩斯坦(Bernstein)定理。
3.可列集的定义及等价条件;可列集的运算性质;有理数集的可列性。
4.无限不可列集;[0,1]的无限不可列性;连续点集的基数及几个常见的例子;基数无最大者性。
5.n维欧氏空间中的邻域、内点、聚点,距离、收敛的概念及其等价条件;孤立点、边界点、内核、导集的概念及其简单的性质;Bolzano-Weierstrass定理。
6.开集、闭集、完备集的定义;开集、闭集的运算性质;直线上开集、闭集、完备集的构造;平面上开集的构造。
7.Borel有限覆盖定理;距离可达性定理;隔离性定理。
8.康托集的概念、构造及性质。
二、测度
1. 勒贝格外测度的概念;外测度的性质;可列集与区间的外测度;勒贝格内测度的概念。
2. (勒贝格)可测集的定义;卡拉皆屋独立条件;可测集的运算性质;单调可测集列极限的测度。
3. 区间、开集、闭集的可测性;型集、型集的概念;可测集与开集、闭集、型集、型集的关系。
三、可测函数
1. 广义实数系上的运算;点集上的连续函数;点集上连续函数列的一致收敛的极限函数的连续性;函数列不收敛点集的表示;函数列的上、下极限的概念;“几乎处处”的概念。
2. 勒贝格)可测函数的定义及其等价条件;连续函数、简单函数的可测性;可测函数的代数运算及极限运算的封闭性;可测函数与简单函数的关系。
3. 叶果洛夫定理;依测度收敛的概念;依测度收敛与几乎处处收敛互不包含举例;勒贝格定理;黎斯定理;依测度收敛的极限的唯一性。
鲁津定理(两种形式)。
四、勒贝格积分
1. 测度有界集合上有界函数的勒贝格大和、小和,上积分、下积分,有界勒贝格可积函数的概念;测度有界集合上函数的有界可积与有界可测的等价性。
2. 积分区域的有限可加性;积分的线性性质;积分的单调性与绝对可积性;区间上的有界函数黎曼可积蕴含勒贝格可积且其积分相等。
3. 非负函数积分存在与可积的定义;一般函数积分存在与可积的定义;勒贝格积分的性质。
4. 勒贝格控制收敛定理;勒贝格逐项积分定理;列维渐升函数列积分定理;法度引理;可积函数积分区域的可列可加性。
5. 区间上有界函数黎曼可积的等价条件;区间上广义黎曼可积与勒贝格可积的等价性。
6. 可测集的乘积测度;可测集的测度用截口的积分表示;非负函数的积分与下方图形的测度的关系;富比尼定理。
本文来源:http://m.okaoyan.com/hangzhoudianzikejidaxue/cankaoshumu_406992.html